Surventilation et confort d'été Retours d'expérience sur 4 bâtiments instrumentés

Nicolas PIOT

BUREAU D'ÉTUDES EGE (MONTPELLIER)

Projet APR 2020

Les partenaires

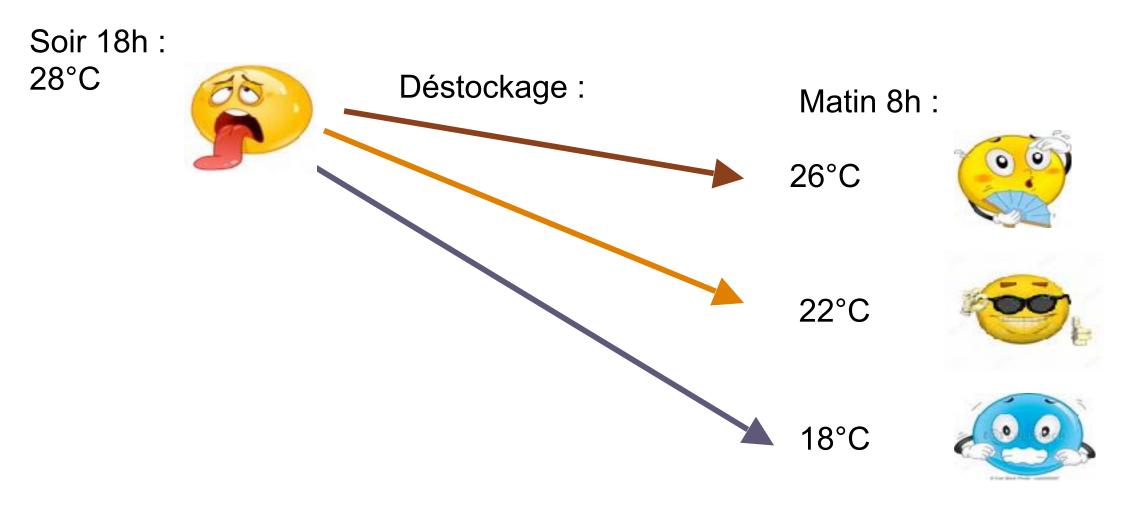
• Les partenaires du projet FREEVENT :

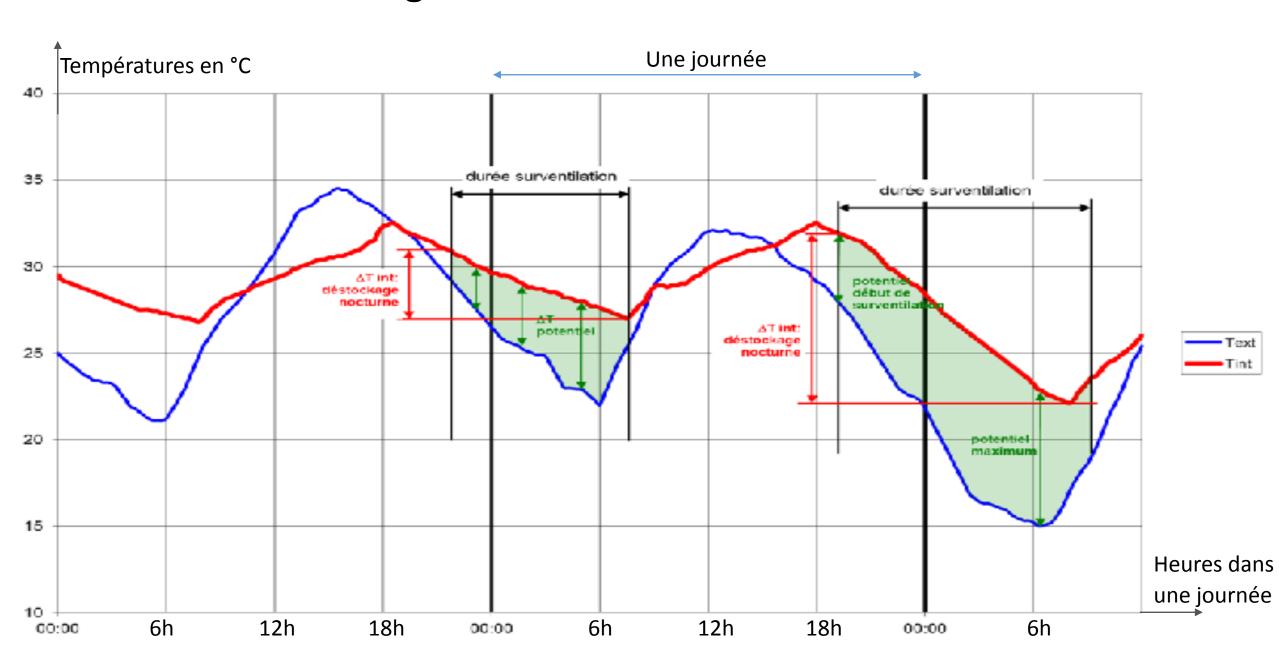
CONTEXTE

- Les bâtiments récents (forte isolation, bonne étanchéité à l'air, confinement des charges internes) présentent des épisodes de surchauffes estivales
- La transition énergétique vise à limiter les consommations énergétiques et donc le recours à la climatisation

La surventilation permet de répondre à ces problématiques

Sommaire


- Définition des concepts de base
- Résultats de mesures et retours d'expérience sur 4 bâtiments instrumentés (maisons, crèche, bureaux...)


http://multimedia.ademe.fr/telechargements/Extrait-surventilation_confort_ete-010612.pdf

Performance de la surventilation

Le déstockage thermique

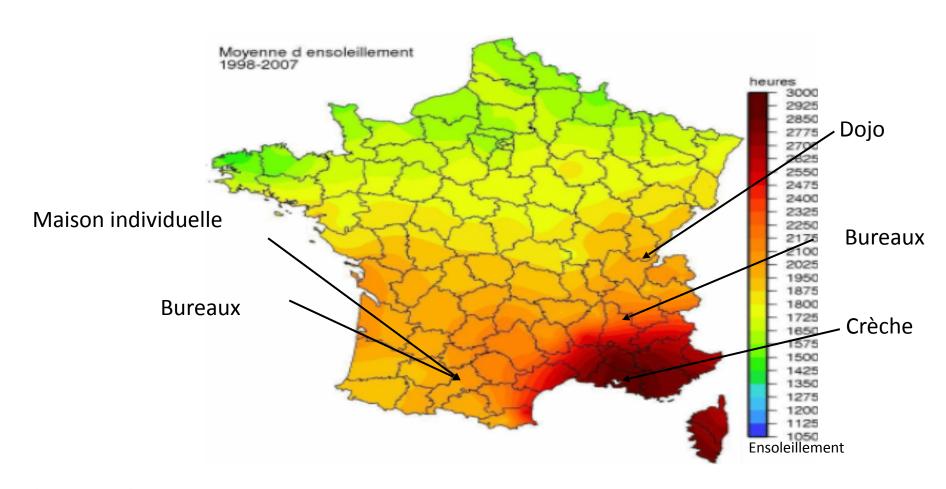
Potentiel et déstockage

Performance énergétique

• Notion de EER Energy Efficiency Ratio

EER = kWh froid / kWh électrique

Ventilation naturelle


kWh élec ~ 0 EER = ∞ Ventilation mécanique

EER généralement entre 4 et 10

L'optimisation du EER passe après l'obtention du déstockage nécessaire. Un bon EER n'est pas synonyme de surventilation efficace.

MESURES SUR SITE

Bâtiment de bureaux, Labège(31)

Type de bâtiment	Tertiaire	
Adresse du bâtiment	Labège (31)	
Année de construction	2009	
Année de réhabilitation	and a	
Mode de construction	béton	
Type d'isolation	Béton cellulaire + Laine de verre 10 cm	ī
Protections solaires	Volets roulants ext.	
Gestion des protections	Manuelle	
Orientation bâti (zones surventilées)	Nord et sud	
Système de ventilation	Ventilation double flux	
Type de chauffage	PAC eau/eau plancher chauffant	
SHAB (m²)		
Système de surventilation	Ouverture d'ouvrant en façades dans les bureaux et salles de réunion	Ì
Mode de contrôle surventilation	Contrôleur programmable avec dérogation manuelle possible.	

Bâtiment de bureaux, Labège(31)

- Ventilation double flux en journée
- Surventilation naturelle par ouvrants motorisés la nuit :
 - Contrôle automatique :
 - Sondes températures int et ext
 - Sondes Vent et Pluie
 - Dérogation manuelle possible
 - Report des données (monitoring)
- Ouverture sur 15cm et barreaux antieffraction, pas de moustiquaire

Bâtiment de bureaux, Labège(31)

 Etude de conception initiale : déstockage nocturne attendu de 2°C (hypothèses pessimistes)

Instrumentation	Déstockage avec/sans surventilation	potentiel	Déstockage /potentiel moyen
Bureaux RDC (31)	-1,8°C / -0,5°C	3°C	60 %
Bureaux Etage (31)	-2,5°C / -1,5°C	4°C	62 %

Conclusions:

- L'optimisation du monitoring a mis 2 ans avec une forte implication des occupants
- Besoin de réceptionner le contrôle et la régulation
- Objectif simulé atteint : faible décharge nocturne mais faible charge diurne.
- Potentiel non totalement utilisé (=>assistance mécanique?)
- Occupants satisfaits malgré l'asymétrie RdC / R+1

Bâtiment de bureaux, Valence (26)

Type de bâtiment	Bureaux			
Adresse du bâtiment	44 me l'aventines 26000 Valence			
Année de construction	NC			
Année de réhabilitation	Récente (env. 2005)			
Mode de construction	NC			
Type d'isolation	NC			
Protections solaires	Ailettes			
Gestion des protections	Manuelle			
Orientation bâti (zones surventilées)	Tout le bâtiment			
Système de ventilation	NC			
Type de chauffage	NC			
SIIAB (m²)	NC			
Système de surventilation	Extraction Mécanique-Simple flux nocturne			
Mode de contrôle surventilation	Contrôle manuel, activation de la surventilation manuellement vers Juin et déclanchement automatique le soir. Les occupants doivent laisser les fenêtres ouvertes en partant			

- Extraction dans les couloirs
- Les occupants laissent leurs fenêtres ouvertes en partant
- Déclenchement par horloge 22-7h
- Débit 4 à 8 vol/h selon les bureaux

Bâtiment de bureaux, Valence (26)

Figure 5: Caisson d'extraction aile Ouest

- 4 bureaux instrumentés sur les 3 étages
- 1 seul ouvre les fenêtres régulièrement avant son départ

Sonde	S2	S11	S15	S10
% ouverture fenêtres nocturne	75%	8%	16%	0%

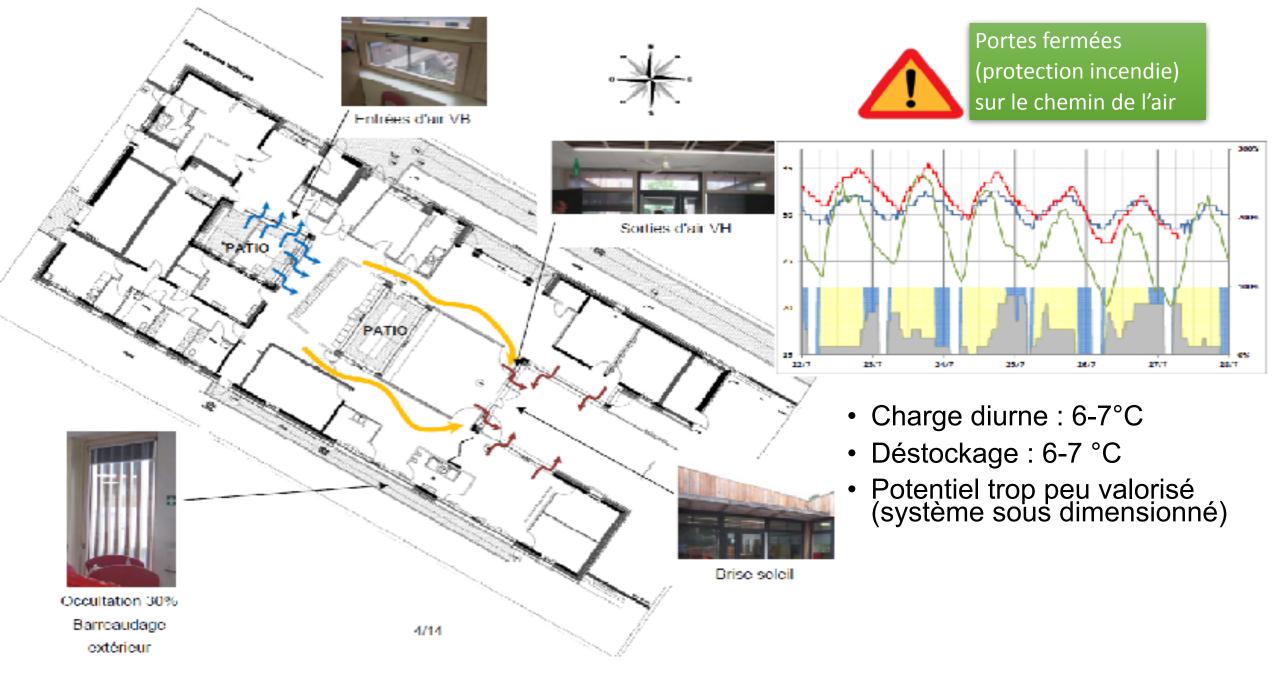
- Le déstockage nocturne est bon et proche du potentiel mais uniquement pour ce bureau
- Certains occupants se plaignent du froid le matin (corrélé par les mesures effectuées).
- Extraction limitée à cause du bruit de voisinage (vitesse 3/5)

Bâtiment de bureaux, Valence (26)

Conclusions:

- Gains réduits par les fenêtres restant fermées (le ventilateur d'extraction consomme pour rien)
 - EER de 0 à 4 sur les 4 bureaux mesurés
 - EER de 7 à 10 uniquement lorsque les fenêtres sont ouvertes
- Dès la conception, prévoir de stopper la surventilation lorsque la température souhaitée est atteinte
 - évite le froid,
 - consommation ventilateur inutile
- Sensibilisation occupants essentielle (et traitement des inconforts)
- Déstockage assez bon malgré limitation de vitesse : la conception doit intégrer l'aspect acoustique

Crèche à Vitrolles (13)


Type de bátiment	Crèche collective		
Adresse du bâtiment	Chemin des pignes, 13127 VITROLLES		
Année de construction	2012		
Mode de construction	enveloppe béton armé et toiture végétalisée		
Type d'isolation	- Laine minérale en couverture - 16 cm ITE fibre de bois en façades - 25 cm Polystyrène en sous face de plancher bas		
Protections solaires	Barreaudage bois vertical fixe en façade SSO (30% d'occultation environ) Brise soleil bois horizontal patio façade SEE Aucune sur les façades SSO des patios		
Gestion des protections	aucune		
Orientation bâti (zones surventilées)	NE / SO		
Système de ventilation	Ventilation double flux		
Type de chauffage	Chaudière gaz 2 départs: Plancher chauffant Radiateurs zone logistique et batterie CTA A.N. cantine		
SHON (m²)	607		
Système de surventilation	Naturelle ouvrants motorisés en parties basses et hautes		
Mode de contrôle surventilation	Programmation horaire et comparaison de températures Int. et Ext. par GTC		

Projet labellisé BDM Argent

Jeudi 26 Septembre 2019- CAUE

Crèche à Vitrolles (13)

- Décharge nocturne de quelques degrés insuffisante / montée diurne (ensoleillement)
- Hauteur 2.5m => tirage insuffisant
- Capacité de ventilation naturelle estimée à 1200 m³/h pour un DT=5°C => insuffisant : ~1 vol/h sur le volume total et ~2 vol/h sur le volume balayé.
- La forte inertie ne permet pas de décharger vite la chaleur accumulée en journée

Crèche à Vitrolles (13)

 Une option de laisser l'extraction en route aurait été judicieuse avec ventilateurs ECM (basse consommation)

Système	Energie frigorifique	Energie Electrique	EER	ΔT Text/Tint le matin
Aération naturelle	40 kWh	0	N/A	7,2 °C
Extraction débit hygiénique	44 kWh	9,75 kWh	4,5	5,2 °C
Extraction surventilation	60 kWh	14,3 kWh	4,2	2,8 °C
Extraction surventilation Moteur ECM	OU KWII		7,7	

Type d'isolation inconnue Protections solaires Aucune Gestion des protections aucune Orientation bâti (zones surventilées) Nord Système de ventilation Ventilation double flux Type de chauffage SHON (m²) Zones Dojos Modélisées dans STD : 844 m²					
Année de construction Mode de construction Mode de construction Protections solaires Gestion des protections Orientation bâti (zones surventilées) Système de ventilation Type de chauffage SHON (m²) Système de surventilation 2012 Charpente métallique Hypothèse : Bardage double peau U = 0,5 W/m² °C inertie légère inconnue Aucune aucune Orientation bâti (zones surventilées) Nord Ventilation double flux Type de chauffage SHON (m²) Zones Dojos Modélisées dans STD : 844 m² Mécanique, à 110 % de la ventilation hygiénique	Type de bâtiment	Gymnase Arts Martiaux			
Mode de construction Charpente métallique Hypothèse : Bardage double peau U = 0,5 W/m² °C inertie légère inconnue Protections solaires Aucune Gestion des protections Orientation bâti (zones surventilées) Nord Système de ventilation Type de chauffage SHON (m²) Zones Dojos Modélisées dans STD : 844 m² Mécanique, à 110 % de la ventilation hygiénique	Adresse du bâtiment	Avenue du Docteur Berthier, 01800 Meximieux			
Mode de construction Hypothèse : Bardage double peau U = 0,5 W/m² °C inertie légère inconnue Type d'isolation inconnue Protections solaires Aucune Gestion des protections Nord Orientation bâti (zones surventilées) Nord Système de ventilation Ventilation double flux Type de chauffage Zones Dojos Modélisées dans STD : 844 m² Système de surventilation Mécanique, à 110 % de la ventilation hygiénique	Année de construction	2012			
Protections solaires Gestion des protections Orientation bâti (zones surventilées) Nord Système de ventilation Type de chauffage SHON (m²) Zones Dojos Modélisées dans STD : 844 m² Mécanique, à 110 % de la ventilation hygiénique	Mode de construction	Hypothèse: Bardage double peau U = 0,5 W/m² °C			
Gestion des protections Orientation bâti (zones surventilées) Nord Système de ventilation Ventilation double flux Type de chauffage SHON (m²) Zones Dojos Modélisées dans STD : 844 m² Mécanique, à 110 % de la ventilation hygiénique	Type d'isolation	inconnue			
Orientation bâti (zones surventilées) Système de ventilation Type de chauffage SHON (m²) Zones Dojos Modélisées dans STD : 844 m² Mécanique, à 110 % de la ventilation hygiénique	Protections solaires	Aucune			
Système de ventilation Ventilation double flux Type de chauffage Zones Dojos Modélisées dans STD : 844 m² SHON (m²) Zones Dojos Modélisées dans STD : 844 m² Système de surventilation Mécanique, à 110 % de la ventilation hygiénique	Gestion des protections	aucune			
Type de chauffage SHON (m²) Zones Dojos Modélisées dans STD : 844 m² Mécanique, à 110 % de la ventilation hygiénique	Orientation bâti (zones surventilées)	Nord			
SHON (m²) Zones Dojos Modélisées dans STD : 844 m² Mécanique, à 110 % de la ventilation hygiénique	Système de ventilation	Ventilation double flux			
Système de surventilation Mécanique, à 110 % de la ventilation hygiénique	Type de chauffage				
hygiénique	SHON (m²)	Zones Dojos Modélisées dans STD : 844 m²			
, ,	Système de surventilation	Mécanique, à 110 % de la ventilation hygiénique			
	Mode de contrôle surventilation	7 4 1			

- Fortes surchauffes en journée en usage scolaire
- Usage en été en soirée uniquement (18h-22h) difficile
- Été 2015 : déstockage nocturne 35% du potentiel, faible mais viable (débit trop faible)
 - Installation pas conçue ni dimensionnée pour à l'origine et peu performante
 - Régulation erratique (non-déclenchement de la surventilation certaines nuits)
 - Maintenance défaillante (filtre encrassé -> sous débit)

• Été 2016

- Modulation au CO2 en journée (réduire la remontée si inoccupé l'été par l'exemple)
- Reprise des réseaux du local technique pour réduire perte de charge
- Changement filtre
- Débit remonté à 4500 m3/h en surventilation
- Analyse et correction des défauts de régulation
- EER surventilation dégradé entre 2016/2015
 - Surventilation anticipée à 17h en réponse au besoin des occupants se fait alors qu'il y a peu d'écart Text/Tint : peu rentable énergétiquement
 - Débit de surventilation augmenté
 - EER 2015 : 2,56 en moyenne, et EER 2016 : 1,1 (une clim a un EER entre 3 et 5!)

Conclusions:

- On a amélioré la surventilation en optimisant sa régulation et en adaptant à la demande
- Rien ne vaut un bon dimensionnement initial (débits/conduits, protections solaires, inertie...) et choix d'une puissance absorbée ventilateur faible.
- Surventilation à 0,5 1 vol/h largement insuffisant (ventil hygiénique un peu augmentée)
- Nécessite de bien réceptionner et contrôler la régulation pour avoir les déclenchements prévus
- Besoin d'optimiser confort / énergie. Pour créer un mouvement d'air, mieux vaut utiliser des brasseurs d'air qu'une CTA.
- Bilan énergétique amélioré en occupation (hors surventilation) par la modulation CO².

SONDAGE INSCRIPTIONS AU CYCLE DE CONFERENCES FREEVENT

- Avez-vous déjà mis en œuvre une surventilation sur l'un de vos projet ?
 Nombre d'inscrits : 177
 OUI : 67 (38%)
 NON : 95 (62%)
- Le système a-t-il donné satisfaction par rapport aux attentes?

Vote	1	2	3	4	5
TOTAL	1	7	20	25	8
%	2%	11%	33%	41%	13%
M.O / AMO		2	3		1
ARC/BET	1	3	13	7	5
ENT/MAINT		2	3	11	1
FOURN			1	7	1

Bilan mitigé. Différence MO / installateurs et fournisseurs

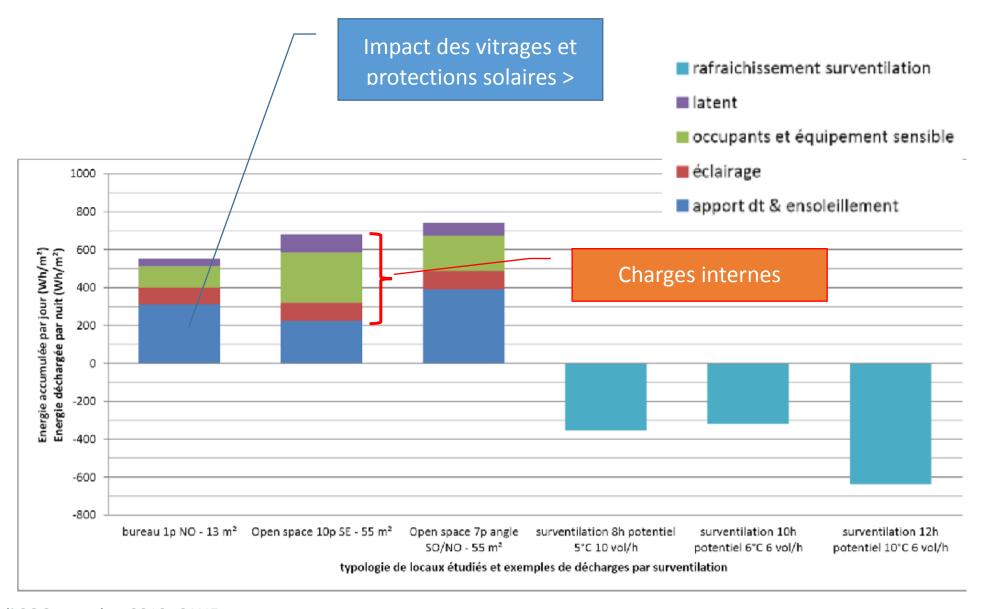
A RETENIR

- La surventilation donne de bons résultats sur des bâtiments adaptés et bien conçus bio-climatiquement :
- 1. Protections solaires
- 2. Gestion des apports internes
- 3. Inertie placée au bon endroit / Isolant
- Système simple et basse consommation, permettant des débits importants (4 à 6 vol/h généralement, soit 10x débit hygiénique)
- 5. Régulation et commissionnement, et/ou participation usagers
- Pour le maitre d'ouvrage, définir clairement l'objectif en nombre d'heures d'inconfort acceptables par an > 28°C.

Jeudi 26 Septembre 2019- CAUE

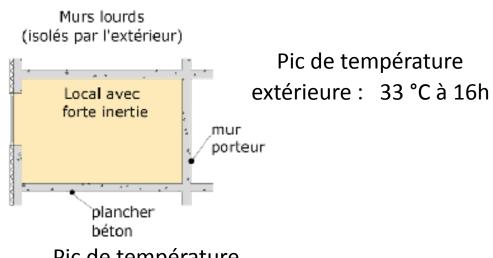
Guide FREEVENT

Questions?



Pour aller plus loin

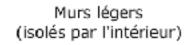
- Approche énergétique
- L'inertie et le déphasage thermique

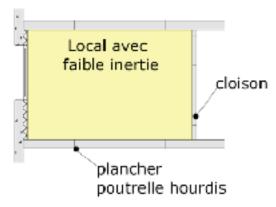

Jeudi 26 Septembre 2019- CAUE

Approche énergétique

Inertie thermique / Isolation

Déphasage et amortissement


Pic de température


intérieure: 29 °C à 22h

Amortissement 4 °C

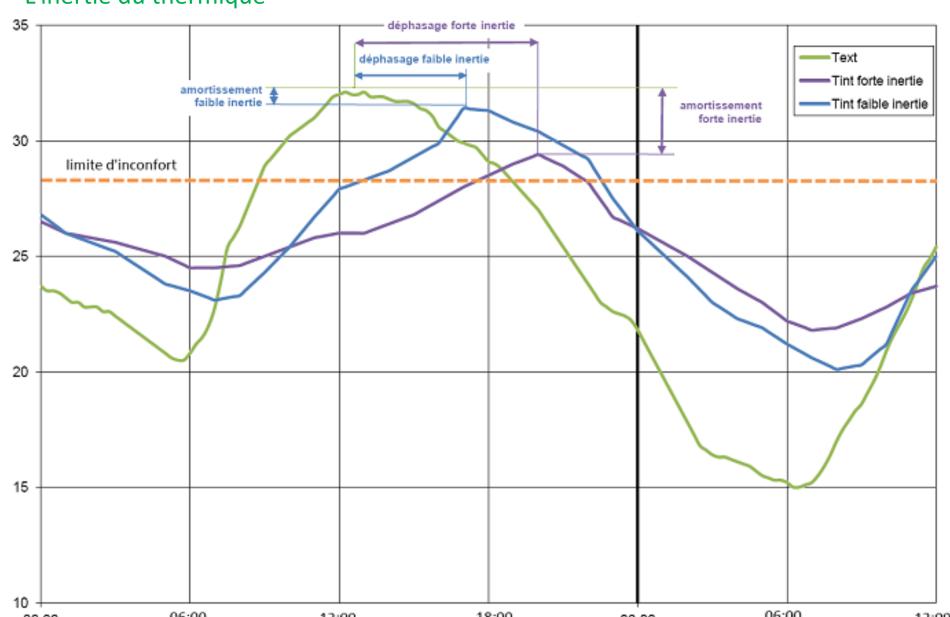
Déphasage 6h

T° à 2h du matin : 25°C

Pic de température

intérieure: 32 °C à 18h

Amortissement 1°C


Déphasage 2h

T° à 2h du matin : 23°C

<u>Dans tous les cas</u>: avoir une forte inertie de l'enveloppe extérieure

3. Analyse du bâti

L'inertie du thermique

